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SUMMARY

This paper presents the application of a class of multi-grid methods to
the solution of the Navier-Stokes equations for two-dimensional laminar flow
problems. The methods consist of combining the full approximation scheme -
full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation
routines for solving the Navier-Stokes equations in primitive variables. The
performance of the multi-grid methods is compared to that of several single-
grid methods. The results show that much faster convergence can be procured
through the use of the multi-grid approach than through the various sugges-
tions for improving single-grid methods. The importance of the choice of
relaxation scheme for the multi-grid method is illustrated.

INTRODUCTION

In spite of the rapid development of computer hardware over the last two
decades, there is need for continuous improvement of computational techniques
in order to achieve better accuracy with minimal computational effort. In
most numerical methods, for fluid flow calculations, better accuracy is
obtained through the use of higher-order discretizations, or finer grid distri-
butions, or a combination of both. With a large number of grid points, direct
methods of solution are often not feasible, because of memory limitations, so
an iterative method must be used. However, it has been found that increasing
the number of grid points distributed in the computational domain leads to a
deterioration of the convergence rate. Thus, for most practical problems in
two- or three-dimensions, the grid distribution required for accurate solution
would Tead to excessive computational times (of the order of hours for two-
dimensional and days for three-dimensional calculations), even on very large
mainframe computers. Hence, the quest for more efficient solution procedures.
The multi-grid technique is emerging as a very promising tool for accelerating
the convergence rate of iterative procedures, especially for calculations with
very fine distributions.

*This paper is reproduced from the Proceedings of the Institution of
Mechanical Engineers, Part C, 1989, by permission of the Council of the

Insti%ution.
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The technique for accelerating convergence of an iterative procedure
through the use of multiple grids was applied as early as 1935 by Southwell
(ref. 1). Other works along similar lines were reported by Southwell (refs. 2
and 3), Stiefel (ref. 4), Federenko (ref. 5) and Wachspress (ref. 6), among
others. These were all two-grid level methods. The idea of utilizing fully
multiple-grid levels was introduced by Federenko (ref. 7) for a Poisson-type
problem on a rectangular gird, and the approach was generalized by Bakhalov
(ref. 8) to any second-order elliptic operator with continuous coefficients.
The first actual numerical computations with the full multi-grid technigue
were reported by Brandt (ref. 9) for some boundary-value problems, using a
finite-difference approach. The multi-grid method has been applied with
finite-element formulations by Nicolaides (ref. 10). In most of these, linear
differential equations were solved. More recently, multi-grid techniques for
solving nonlinear equations have been reported by Brandt (ref. 11), Ghia
et al. (ref. 12) and Vanka (ref. 13).

The previous studies show that the multi-grid methods are quite promising
but a lot of work still needs to be carried out in order to realize their full
potential. In the present study, the multi-grid technique is applied, with
some finite-difference methods, to solve the Navier-Stokes equations for two-
dimensional mode! flow problems. Their performance is compared with that of
various single-grid methods for varying grid distributions and Reynolds
numbers.

MATHEMATICAL MODEL
The Multi-grid Concept

Consider a differential problem represented over a given domain D by the
linear equation:

L UG = FOO P

where L 1is the differential operator, U 1is the unknown variable, F is a
known function, and X = (x], X2, ... xg) are the d independent variables of
the d-dimensional problem. If the domain is divided into a computational
grid with spacing h, the finite-difference equivalent of the equations may be
written as:

thuh¢xhy = rhexhy (2)

Solution of this equation by an iterative procedure such as Gauss-Seidel,
Jacobi, line relaxation, etc., have been found to converge rapidly only for the
first few iterations, and more slowly thereafter. By considering a Fourier
analysis of the error-reduction process of typical relaxation procedures,
Brandt (ref. 11) showed that they are only efficient in smoothing out those
error components whose wavelengths are comparable to the grid mesh size.

Error components with longer wavelengths are smoothed out at comparatively
slower rates. Thus, the idea of the multi-grid technique is to smooth out

high frequency error components by performing a few iterations of the relaxa-
tion process on the fine grid. The remaining errors are then transferred to a
coarser grid where the corresponding lower frequency error components are again
smoothed out in a few iterations. Further transfers are made to even coarser



grids and the process is repeated until all the error components have been
smoothed out. The results are then progressively transmitted back to the
finer grids. The overall effect of this procedure is that the various Fourier
components of the error are removed on grid meshes most efficient for the pur-
pose, thereby accelerating the convergence rate on the fine grid on which the
solution to the finite difference equation is sought.

Thus, in the multi—grid method, the computation is carried out on a
series of grid meshes DX with the corresponding grid functions UK, where

k =1,2,3, ... M, with k =M representing the finest mesh, and the meshes
becoming coarser the lower the value of k. The mesh sizes usually differ by
a factor of 2, so that hg,1 = 1/2 hgx. Although this is not a requirement of
the multi-grid method, it enables simple weighting functions to be employed in
interpolation routines. The finite difference equation can then be written
for the kth grid as:

Lkyk = FK (P

There are several algorithms for implementing the multi-grid idea, each
with several possible variations. One of the simplest is the correction scheme
(CS) which is applicable to linear problems. In this scheme, the calculation
starts on the finest grid DM, and an approximate solution to equation (3) is
computed by a relaxation method such as the Gauss-Seidel, line relaxation, etc.
Unless the approximate sqQlution uk (fortuitously) satisfies the difference
equation (3) and the boundary conditions, there will be a residual RK given

by:
Fk - Lkyk = gk (4)

A few iterations are performed on grid DM until the rate of reduction
of the residuals falls below a desired theoretical rate. The residuals are
then transferred by restriction to the next coarser grid, oM-1 and a correc-
tion function 6UK-1 is obtained by solving the equation:

LK=Teuk-T It']Rk (5)

where LK-1 is the difference operator on grid pk-T  and It_] is the
restriction operator. If k-1 1is the coarsest grid, equation (5) is solved
completely on this grid, otherwise, the problem is transferred to the next
coarser grid as soon as the rate of smoothing of the residuals falls below the
required norm. Once equation (5) has been solved, the correction function
sUK-T s prolongated to grid DK, and UK s subsequently corrected as:

k
k-1

K K

k-1
new -~ Uo]d 8U (6

U + [

where It_] is the prolongation operator. Similar equations are employed to

transfer (prolongate) the intermediate corrections from the coarser grids,

once the prescribed convergence criteria have been satisfied. This process of
relaxation, restriction and prolongation is repeated until the desired accuracy
on the finest grid, DM is achieved.



The scheme described above serves to illustrate the multi-grid idea, but
is inadequate for nonlinear problems such as the Navier-Stokes equation, of
interest here. For this, the full approximation storage (FAS) scheme is
employed.

In the FAS scheme, the full apEroximation UK-1 {5 stored on_ a coarse
grid rather than its correction &U -1 as in the CS scheme. UK-T s given

by:

k=T k=1 gk gkt (7

where UK 1is the fine grid approximation. The full approximation can be
obtained on the coarse grid by solving the corresponding FAS equation:

LT gkt Lk"(lt“ uk) . It']<Fk - LkUk) (8)

The fine grid approximation is then corrected as:

K K K 7kl k=l Kk
Unew = Yoiq * Ik-1<U - Ix Uold) (9

Comparison of equations (5) and (8) shows that the CS and FAS schemes are
equivalent for linear problems. However, equation (8) is additionally suitable
for nonlinear problems, for which the former is not valid.

Present Implementation

In the present paper, the FAS-FMG (full approximation storage - full
multi-grid) algorithm originally developed by Brandt (ref. 11) is employed.
The procedure commences by solving iteratively until convergence, the finite
difference equations on the coarsest grid, using a relaxation routine. The
solution is then prolongated to the next finer grid, where it serves as the
initial approximation of the solution to the difference equations on this grid.
Improved solutions are obtained by applying the relaxation routine on this
grid, until the smoothing rate falls below a desired value. The optimum value
was found by numerical experiments to be a rate of reduction of the normalized
average residual of 0.8 (i.e., Rpy1/Ry < 0.8). Otherwise, the task of smooth-
ing the residuals is transferred to a coarser grid and the FAS scheme already
described is employed. This rate happens to correspond to the theoretical
smoothing rate computed by Brandt (ref. 11) for the Navier-Stokes equation.
The iteration on each grid level is continued until the prescribed convergence
criterion is satisfied, at which time, the solution is transferred to the next
finer grid level and the whole process repeated. The solution process is ter-
minated on satisfying this criterion at the finest grid level M.

It is only necessary to iterate until full convergence on the finest and
coarsest grids. Otherwise, the finer grid residuals are considered suffici-
ently smoothed once the corresponding coarse grid errors have been reduced to
about 20 percent of the restricted values. Then the corrections are prolon-
gated back to the fine grid. In the present work, fully adaptive, full multi-
grid cycles are employed, which are controlled solely by the aforementioned
convergence criteria and the desired smoothing rate. There is, however, a
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wide range of possible multi-grid cycles, some of which are discussed by
Stiben and Trottenberg (ref. 14).

Restriction and Prolongation

Restriction and prolongation routines are required to transfer the fine
grid approximations and residuals onto the coarse grid, and the coarse grid
corrections onto the fine grid, respectively. The operators were denoted by

It*‘ and IE_], respectively. In the present work, a staggered grid is

employed for the velocity components and the pressure, as shown in figure 1.
So, the transfer operators would be different for each of the variables U,V,P
and for the residuals Ry and Ry. The restrictions are made by averaging the
neighboring fine grid values, and the prolongations by applying bilinear inter-
polation to the closest set of coarse grid values.

Relaxation Methods

The Navier-Stokes equations can be written for two-dimensional steady,
laminar plane flow as:

U | BWV) _ 18P, v(gfg \ gfg) (10)
ax ay p X 8x2 ayz
BUVY | W) 18P v(gfy . gfy) an
ax ay p dy ax2 ayz
and the continuity equation as:
%% . g¥ = 0 (12)

Using the sta%gered grid system (fig. 1), these equations can be discre-
tized for the 1,j} cell giving, in each case:

P - P
u _aU u u u 1-1.1 1,1
ACU1,j = AeU1+1,j + AwU1—1,j + AnUi,j+1 + ASU1,j-l + phX, 12 ] (13)
P, ., - P
v _ v v v v 1,3-1 i,]
AVi g = Ay g AV Ay gt AV g ¢ T (14)
aPSI B U RN T P B I (15)
AX, . * Ay, - =
1,] 1,]

where the coefficients A., Ag, Ap, etc., are derived using the hybrid
(central/upwind) difference scheme proposed by Spalding (ref. 15). The actual
expressions can be found in Vanka (ref. 13).



Similar expressions can be written for the other face velocities by
increasing the indices of 1 and j by one in equations (13) and (14),
respectively. Thus:

P, , - P. .
u _ U u u u 1,1 iei,]
Adian,g = AYiaz,g * Ag * Al ge * AV g e, ] (16
AVy - AV + AV + AVY « A% Pig Mg Qa7
P T TS EaA™0 8 P8 I P AR PG B, PO n'1,j+2 * Nsti,3 T PBYy 1,172

We now assume that the velocities on the right-hand side of equations
(13), (18), (16), and (17) are known, so that the face velocities (on the left-
hand side) can be evaluated once the pressures are found. The method for find-
ing the pressures characterizes the relaxation scheme. In equations (13) to
(17), there are four unknown velocities and five unknown pressures. Each of
these can be split into known and unknown components, consisting of guesses
(*)'s, and corrections (')'s. Thus,

\
=U*

U i1

1,3 1,]

Uier,3 = Yier,g * YiaLg $

(18)
Vy g ViV
Yige1 7 Vige  Vign
and

Pry= Pl Py (19a)
Piet,s = Plenns * Piaryy (190
Pirg = Pl g * Pl (13¢)
Pige1 = Pige * PiLga (13d)
S P 4 P (19¢)

Pi3-1 = PiLg-1 7 Piga
We now need to solve the system of equations (13) to (17) for the correc-
tions, 1.e., the (')'s

Plane Relaxation (SIM)

In equations (13), (14), (16), and (17), each of the velocity corrections
is expressed solely in terms of known velocities and pressures and unknown
pressure corrections, so that we can substitute these equations into equation
(15) to yield the pressure correction equation. This equation will have five
unknowns, and it will be necessary to generate the equations at all the inter-
nal nodes in the two-dimensional plane in order to form a closed set.
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The penta-diagonal matrix equation set has the form:

+D P: + F 20)

B i, = A aPian g BsPicn g GugPae 0P R

where
A = 1 pAu Ax Ax )
i3 /( ¢y g 3 Misar g
u
B =1 pA_ )
13 /( i3 8% a3
C = ]/(pAV Ay Ay )
i3 ¢y g 13 Mg
v
Dy 4= ‘/(PAc1 ; 8Y5 4 Ayi.j—(l/Z))
Ei,j = Ai,j + Bi,j + C1,j + Di,j
and

£ . RC /' u / u QU / u
i Ry Axi,j(Ri,j fey T Mg ey

v v v A
- R A
+ I/Ayi’j(Ri’j/Aci,j th”/ Ci,j+])

The R's represent the residuals of equations (13) to (17). The equa-
tion set must be solved simultaneously for all internal grid nodes in the two-
dimensional plane. The strongly implicit method (SIM) of Stone (ref. 16) is
applied with an iteration parameter of 0.9 for the solution. Once all the
pressure corrections are obtained, the velocity corrections can be computed

from:

ui g = [RYg e (i g - P%,j)/" Axi-(1/2),j]/ALcli’j (2D
Uiar,g = [Rl;n,j + (P%,j - P%n,j)/" Axi+(l/2)j]/Agi+]’j (22)
Vs Ry (g -y /e Ayi,j-<1/z>]/"zi,j (23)
Vi3 = [R¥,j+1 + <P%,j - Pi,jn)/" Ay1,3+<1/2>]/"zi‘j” 28



Due to the nonlinearity of the momentum equations it may be necessary to
under-relax the velocity corrections so that only a fraction of them is uti-
lized in equation (18). The usual practice of implicit under-relaxation is
employed here. The optimum under-relaxation factor was found to be 0.9.

Line Relaxation (CLSOR)

Line relaxation is obtained, using a coupled, line successive over-
relaxation scheme. If we presume that only the pressure corrections for nodes
lying along a line (in the x- or y-direction) are unknown, all others are
known, presumably zero. Then there will be three unknown pressure corrections
and four unknown velocity corrections to be determined at each node. Equa-
tion (20) then reduces, for x-line relaxation, to one of the form:

Ei,jpi,j = A1,3P1+]’j + Bi,jpi—l,j + Fi,j 25
Similar equations need to be written for the other internal nodes along the
line, in order to form a closed set. The system of tri-diagonal equations is
then solved simultaneously, with a tri-diagonal matrix algorithm (TDMA), which
is efficient and has a low operation count. The velocity corrections are sub-
sequently computed, for all the nodes lying along the 1ine, using a variant

of equations (21) to (24) in which the pressure corrections P; j-1 and

P. have been set equal to zero. The procedure is then repéated for the

s Jt+
other parallel lines in the computational domain. Y-1line relaxation can be
performed in a similar manner. The optimal under-relaxation factor was found
to be 0.6 for test case 1 and 0.9 for test case 2.

Point Relaxation

This is the so-called symmetric coupled Gauss Seidel (SCGS) method pro-
posed by Vanka (ref. 13). It assumes that only the pressure correction at the
central node is unknown so that there are five equations and five unknowns
(one pressure correction and four velocity corrections) to be determined at
each node. These equations can be solved algebraically, since simple manipula-
tions yield an explicit expression for the pressure correction. The velocity
corrections are then computed from a variant of equations (21) to (24) in
which all pressure corrections other than the central one are set to zero.
the procedure is repeated for all internal grid nodes. A lexicographic visit-
ing order, which is reversed in alternate iterations, was employed in the
present study. The optimum under-relaxation factor was found to be between 0.5
and 0.6 for this method. The SCGS differs from the SIVA (simultaneous variable
adjustment) method of Caretto et al. (ref. 17) only through the incorporation
of additional unknown velocities on the right-hand side in the latter. For
example, on the right-hand side of equations (13) and (14), respectively,
Uje1,5 and Vy j47, are also considered unknown. Similarly, in equations (16)
and (?7) Ui,j and V1‘j are considered unknown. The explicit expression for
the central pressure correction is more complex in SIVA.

Comparison of Relaxation Methods

In the present relaxation methods, the pressure-velocity coupling, inher-
ent in the momentum and continuity equations, is retained. Further, all the
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velocity components are obtained simultaneously. They differ from the SIMPLE
method of Patankar and Spalding (ref. 18), and proposed derivatives (refs. 19
and 20) which solve for the velocity components in a sequential or decoupled
manner.

The plane-relaxation method is the most implicit, and would normally be
expected to be the most stable, having also the fastest convergence rate. How-
ever, the coefficients of the equations require two-dimensional storage arrays,
so that the computer memory requirements are high. On the other hand, the
point-relaxation method is the least implicit, exhibiting a space decoupling
from neighboring grid points. The decoupling effect is reduced somewhat by
computing, at each node, all the four velocities on the faces of the control
volume. Hence, in a complete sweep of the computational domain, each velocity
is updated twice. However, no arrays are required to store any coefficient of
the equations. The line-relaxation method lies in between. Only the veloci-
ties normal to the relaxation line are computed twice. Also, the coefficients
only need be stored along one line of grid nodes. The increase in memory
requirements is thus minimal.

The expected superiority of plane relaxation is not fully realized in the
present study, since the methods are applied to nonlinear problems. The equa-
tions are linearized and the coefficients have to be repeatedly updated as soon
as better values are available. The point-relaxation method ensures the most
rapid updating of coefficients, and the plane-relaxation method, the slowest.
Hence, the advantages of increased implicitness in the latter are offset, some-
what, by slower updating of coefficients, and vice versa.

RESULTS AND DISCUSSION
Test Cases

Three test cases were chosen in order to evaluate the performance of the
present methods. The first is the Taminar flow in a lid-driven square cavity
(see fig. 2(a)). The second case is the laminar flow through a backward facing
step with an expansion ratio of 2 (see fig. 2(b)). Finally, the lid-driven
cavity flow was computed in several cavities over a range of aspect ratios.

For case 1, computations were performed at two Reynolds numbers, namely
100 and 1000, based on the velocity of the moving 1id and the cavity width.
For case 2, computations were performed at Reynolds numbers (based on the mean
inlet velocity and channel height) of 100 and 500 and aspect ratios L/H of
3 and 6, respectively. The longer aspect ratio of the computational domain was
due to the correspondingly longer recirculation length encountered in the
latter.

The final case compares the performance of the multi-grid methods in 1lid-
driven cavities with aspect ratios (B/H) ranging from 1/6 to 6, each at a
Reynolds number of 100. The aspect ratio was varied by changing H, while
keeping all other parameters unchanged.

In all these test cases, the same number of grid nodes was utilized is
both the x- and y-directions, so that the grid cell aspect ratio would be the
same as the aspect ratio of the channel or cavity.



Comparison of Single-Grid and Multi-grid Methods

In order to evaluate the performance of the present multi-grid methods,
their convergence characteristics are compared with those of various single-
grid methods. Three additional single-grid methods are employed, namely, the
SIMPLE algorithm of Patankar and Spalding (ref. 18), an improved variant by
Issa (ref. 19) named PISO, and another by Van Doormaal and Raithby (ref. 20)
called SIMPLEC. Full details of these methods can be obtained from the origi-
nal references and will not be repeated here. It suffices to mention that they
are all based on the line-by-line solution of the Navier-Stokes equations in a
decoupled manner. Thus, they differ from the present line-relaxation method
which solves the Navier-Stokes equations, symmetrically along a line, and in a
coupled manner.

Table I shows the comparison of the CPU times and the number of fiterations
required for convergence when the six single-grid methods and three multi-grid
methods were applied to the lid-driven square cavity flow. The results are
presented for six different grid levels. The convérgence criterion in each

case is that the residual norm R < 1072, R is defined as:
2 2 2
= Ru + Rv + Rm
- 3 x (NI-2) x (NJ-2)
where
Ry sum of residuals of the U-momentum equation at all modes
Ry sum of residual of the V-momentum equation at all nodes
Rm sum of residual mass sources at all nodes

(NI-2) number of internal grid nodes in the x-direction
(NJ-2) number of internal grid nodes in the y-direction

At this convergence level all methods gave the same results. In the columns
for the multi-grid methods, three values are presented. The first value repre-
sents CPU times on the Siemens 7881 Computer. Although some of the computa-
tions were performed on the Definicon DSI/780 processor, test computations
showed that these take 25 times longer, so the times have been duly converted.
The second value represents the number of iterations on the finest grid and

the third gives the total work units which is the equivalent number of finest
grid iterations of the total relaxation work performed on all the levels. The
latter is thus comparable to the number of iterations in the single-grid
columns.

The results show that among the single-grid methods which solve the equa-
tions in a coupled manner, plane relaxation produced convergence in the least
number of iterations, followed by line relaxation, and then point relaxation.
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However, it required the largest CPU time per iteration, hence, total CPU

times are comparable for all methods. Contrary to expectations, the decoupled
single-grid methods generally resulted in faster convergence than the coupled
ones. This is probably due to the faster rate of updating the coefficients in
the former, which appears to overweigh the disadvantages of solving the equa-
tions sequentially. This may not apply to the multi-grid methods, since in the
decoupled procedure, the residuals, which have to be smoothed on the coarser
grids, are changed by the pressure correction equation in an inconsistent
manner.

Arakawa et al. (ref. 21) reported slight advantages for the coupled,
multi-grid methods over the decoupled ones. In general, the multi-grid meth-
ods converged faster than single-grid ones, especially for finer grids.
Figures 3 and 4 present log-log plots of the CPU times for convergence versus
the total number of internal grid points. The slopes roughly approach 2 for
single-grid methods, but are approximately 1 for multi-grid methods, which
shows that the CPU times for convergence increases almost quadratically with
the number of grid points in the latter, but only linearly in the former. It
is this independence of the computational work per grid point, on the level of
grid refinement that makes multi-grid methods quite attractive for fine-grid
calculations. Usually, less than 30 iterations were required on the finest
grid. However, in contrast to the single-grid methods, the multi-grid methods
showed slower convergence with increase in Reynolds number, in the lid-driven
square cavity flow. Typically, 1.5 to 2.5 times more computational work was
required at Re = 1000, as compared with Re = 100. This coincides with the
findings of Vanka (ref. 13) and Barcus et al. (ref. 22).

At higher Reynolds numbers, the coarser grids appear to become ineffi-
cient in smoothing out finer grid errors. The point-relaxation method pro-
duced the fastest convergence of all multi-grid methods. With the additional
advantage of minimal memory requirements to store the coefficients of the
governing equations as compared to the other methods, it is clearly the best
for this problem. For the finest grid (162 x 162), the ratio of CPU times
(best single-grid/best multi-grid) was 81 at Reynolds number of 100, but only
14 at Reynolds number of 1000. Computer core memory requirements were
1.50, 1.52, and 3.30 M Bytes for the multi-grid codes with point, line, and
plane relaxations, respectively.

Figure 5 shows some comparisons of the computed velocity profiles with
those of Ghia et al. (ref. 12) at Reynolds numbers of 100 and 1000. The agree-
ment is seen to be perfect, within the limits of accuracy of the plots. The
predicted sizes and strengths of the primary, secondary, and tertiary vortices
also compare quite well. Figure 6 shows the streamline plots at both Reynolds
numbers.

Table II shows the comparison of the CPU times and the number of jtera-
tions required for convergence for the backward-facing step flow problem. The
comparisons are for 6 grid levels. The results show that, for single grids,
the point-relaxation method exhibited the slowest convergence rate, and this
became worse, the higher the grid aspect ratio. The coupled line- and plane-
relaxation schemes had better convergence rates; albeit worse than the better
decoupled methods. The deterioration of the convergence rate of the point-
relaxation scheme with increased grid aspect ratio was even more pronounced in
the multi-grid version. Typically, there was a four- to six-fold increase in

1



the CPU times for convergence when the grid aspect ratio was increased from

3 to 6. Larger aspect ratios are required for higher Reynolds number computa-
tions since the recirculation zone and the recovery length increased with
Reynolds number. Preliminary calculations showed that there was no Reynolds
number dependence of convergence rates in this case. The multi-grid methods
using line- and plane-relaxation schemes showed only modest increases in the
required CPU times. The line-relaxation scheme appeared to have the best over-
all performance. Brandt (ref. 11) did point out that point-relaxation schemes
would not be efficient for equations with large differences in magnitudes of
the directional coefficients, as would result from grids with high cell aspect
ratio. The asymptotic convergence rates of point-relaxation schemes such as
the Gauss-Seidel were shown to be inferior to those of line-relaxation schemes.
The present results show that the use of the appropriate multi-grid method
enabled the required CPU times, on the finest grid, to be reduced by factors

of up to about 20 and 13 for L/H = 3 and 6, respectively, as compared with the
best single-grid method. The factors are correspondingly lower for the coarser
grids. In fact, significant advantages of the multi-grid methods on.y occurred
for grids finer than 34 x 34. Below this, the best multi-grid method might
converge slower than the best single-grid one. It should be noted, however,
that the multi-grid concept always resulted in faster convergence, if the same
relaxation scheme was utilized. Also, the linearity of the CPU times for con-
vergence with the total number of grid nodes is again shown in the log-1og
plots in figures 7 and 8. A useful measure of the utility of the multi-grid
technique is the ratio of the CPU times for best multi-grid method/ best
single-grid method. Table III presents this ratio for the two test cases.

Finally, the three multi-grid methods were applied to the lid-driven
cavity flow at Reynolds number of 100, but at various aspect ratios (B/H).
This test case combines aspects of the first two test cases; the flow reversal
in the cavity with high cell aspect ratios. The computed results are similar
to those of Pan and Acrivos (ref. 23), with a single central vortex at the low
aspect ratios and multiple central vortices at higher ratios of 3 and 6. The
convergence characteristics are presented in table IV. The convergence rates
for the three calculation methods are similar for aspect ratio of 1. On
decreasing the aspect ratio to 1/6, through 1/3 all methods experienced much
slower convergence rates. CPU times for convergence increased by factors of
7, 34, and 18, for the calculation methods with plane-, line-, and point-
relaxation schemes, respectively. Similarly, on increasing the aspect ratio
to 6, CPU times for convergence increased by factors of 6 and 7 for the plane-
and point-relaxation schemes, respectively. No convergence solution was
obtained with the line-relaxation scheme. The residual norm decreased by two
orders of magnitude and, then subsequently, oscillated about this value. Line
relaxation is, of course, directionally sensitive. It is most effective along
lines perpendicular to the main flow direction, sweeping from upstream to down-
stream. In the present flow problems, the relaxation line would be mostly par-
allel to the velocity vectors when the aspect ratio is 1/6, but perpendicular
to them when the aspect ratio is 6. So the slowing down of the convergence
rate in the former is explicable. But in the latter, the velocity vectors
have reversed directions near the 1id and on the opposite side of the cavity.
Whereas, line relaxation is carried out from upstream to downstream with
respect to the flow in the top half, the situation is reversed with respect to
the flow in the bottom half. This latter situation is believed to be the
cause of the oscillation and lack of convergence in this case. The directional
sensitivity of line-relaxation schemes make them unsuitable for use in general
purpose codes.
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Point- and plane-relaxation schemes do not have such directional sensitiv-
ity, but the former is more adversely affected at all aspect ratios differing
from unity. Plane-relaxation schemes thus appear to be the safest compromise
for a general-purpose multi-grid code. But there is a penalty to pay for
increased computer core memory requirements. Point-relaxation schemes would,
of course, be best if large cell aspect ratios can be avoided.

CONCLUSION

It has been shown that considerable improvements in convergence rates can
be achieved in two-dimensional fluid flow computations on fine grids by
employing the multi-grid concept. For nearly homogeneous difference equations,
the multi-grid method with a point-relaxation scheme proposed by Vanka
(ref. 13) gives the best performance in terms of both CPU times and computer
memory requirements. However, this method is inadequate for solving inhomoge-
neous equations, resulting from large grid aspect ratios, or similar. In these
cases, a line- or plane-relaxation scheme should be utilized with the multi-
grid method, but the computer memory requirements would increase accordingly.
In the particular cases presented here, plane relaxation appeared to be the
most robust although it would not necessarily procure the fastest convergence
in all problems.

The multi-grid methods showed a linear increase in CPU times for conver-
gence, as the computational grid was increased, whereas the single-grid
methods exhibited a nearly quadratic increase. Thus, for very fine-grid compu-
tations multi-grid methods would always be better than any single-grid method.
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TABLE I. - CPU TIMES AND NUMBER OF ITERATIONS FOR LAMINAR FLOW IN A LID-DRIVEN SQUARE CAVITY

Fluid

(a) Re = 100
Grid Single-grid® Multi-gridP
(NI x NJ)
SIMPLE SIMPLEC PISO SCGS CLSOR SIM SCGS « FMG CLSOR « FMG | SIM + FMG
7 x7 0.4/29 0.5/42 0.4/18 0.3/27 0.1/23 0.4/17
12 x 12 1.4/55 1.1/38 1.1/726 1.9/9 1.3/62 2.0/54 0.8/19/35 1.0/30/43 2.8/16/69
22 x 22 13.5/7162 5.5/61 5.9/47 23.8/324 16.4/194 16/183 3.9/19/43 4.1/20/744 7.5/14/15
42 x 42 184/548 65/187 70/42 254/853 2197641 255/617 13/14/34 15/17/38 16/15/38
82 x 82 2559/1848 885/625 1010/472 | 3240/2786 | 2931/2128 | 3600/1755 38/12/27 55/15/34 59/14/32
162 x 162 N/AC 1 800/2000 N/AC N/AC N/AC N/AC 145/11/23 219/15/34 245/11/41
{(b) Re = 1000
7 x 7 0.5/37 0.6/53 0.4/21 0.4/34 0.2/29 0.5/22
12 x 12 1.3/749 1.2/45 1.2/29 1.5/68 1.4/65 1.5/43 0.9/36/40 1.4/36/57 4.6/25/110
22 x 22 8.3/97 5.3/59 4.7/36 14.3/192 14.3/168 10/108 4.6/20/49 11.2/42/13 16/32/157
42 x 42 81/244 38/111 34/69 206/702 145/428 107/269 26/23/68 42/33/105 44/28/129
B2 x 82 9507687 3487248 3737182 | 3045/2538 | 1499/1086 | 1492/728 102/18/66 131/22/82 153/22/103
162 x 162 N/AC 4496/750 4957/549 N/AC N/AC N/AC 325/13/52 315/12/47 342/16/63
ACPU time (sec) on S7881/number of iterations.
CPU time (sec) on S78B1/number of fine grid iterations/total work units.
CNot available due to excessive CPU time.
TABLE II. - CPU TIMES AND NUMBER OF ITERATIONS FOR LAMINAR FLOW OVER A BACKWARD FACING STEP
(a) Re = 100, L/H = 3
Grid Single—grid? Multi-grid?
(NI x NJ)
SIMPLE SIMPLEC PISO SCGS CLSOR SIM SCGS + FMG CLSOR + FMG | SIM + FMG
6 x 6 0.4/35 0.5/51 0.4/13 0.1/36 0.2/15 0.1/1
10 x 10 0.8/39 0.9/46 0.7/19 1.5/113 0.5/37 0.3/727 0.8/31/55 0.4/20/26 0.4/28/34
18 x 18 5.0/88 2.5/42 2.8/32 15/305 6.5/122 4.5/93 3.8/28/65 2.0/23/24 2.3/24/43
34 x 34 61/278 26/120 32/99 154/775 91/418 74/296 16/22/68 11/27/46 12/23/56
66 x 66 812/922 3427376 340/312 N/AC 900/1031 760/1020 63/22/65 55/30/55 56/25/62
130 x 130 N/AC 4400/1180 N/AC N/AC N/AC N/AC 214/21/56 243/29/58 257726767
(b) Re = 500, L/H = 6
6 x 6 0.4/35 0.5/52 0.4/18 0.4/715 0.6/16 0.1/11
10 x 10 1.0/48 1.0/51 0.8/24 4.2/314 0.7/30 0.4/33 2.8/75/181 0.4/24/29 0.5/29/420
18 x 18 5.0/82 3.6/59 3.4/39 50/1022 4.0/68 3.8/788 17/78/274 2.6/27/43 3.1/33/657
34 x 34 74/338 287123 40/123 364/1846 50/229 94/354 87/55/345 18/37/725 33/66/169
66 x 66 1000/1100 3717404 5027387 N/AC 900/1031 964/1329 358/51/365 70/27/70 95/22/118
130 x 130 N/AC 4490/1200 N/AC N/AC N/AC N/AC 1200/41/292 339/34/82 318/25/90

ACPU time (sec) on $7881/number of iterations.
CPU time (sec) on 57881/number of fine grid iterations/total work units.
CNot available due to excessive CPU time.
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TABLE III. - RATIOS OF CPU TIMES

{Best single-grid/best multi-grid.]

Grid Case 1(a) | Case 1(b)
(NI x NJ)
12 x 12 1.4 1.3
22 x 22 1.4 1.0
42 x 42 5.0 1.3
82 x 82 23.3 3.4
162 x 162 81.4 13.8
Grid Case 2{a) | Case 2(b)
(NI x NJ)
10 x 10 1.3 1.8
18 x 18 1.3 1.3
34 x 34 2.4 1.6
66 x 66 6.2 5.3
130 x 130 20.6 13.2
4Vin
B ) —t
Uy, Pl Uis1,j

I Vl.j
(8) SYMMETRIC GRID NODES.

b e ——

(b> CONTROL VOLUMES FOR THE |. jvu CELL.
FIGURE 1. - STAGGERED GRID SYSTEM.

Ayi,j-1/2
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TABLE IV. - PERFORMANCE OF MULTI-GRID METHODS IN LID-
DRIVEN FLOW IN CAVITIES WITH DIVERSE ASPECT RATIOS

Aspect | Re = 100, 5-level multi-grid, 66 x 66 grid

ratio

(B/H) SCGS + FMG2 CLSOR + FMG3 | SIM + FMG?
1/6 513/91/484 953/150/1088 2371/122/276
1/3 129/35/122 152/ 58/17% 95/ 47/115
1 29/11/37 29/ 16/36 32/ 13/27
3 56/27/54 144/ 68/181 64/ 34/65
6 189/97/179 Oscillating, 184/111/205

no convergence

4CPY times (sec) on 57881/number of fine grid itera-
tions/total work units.
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(b) FLOW OVER A BACKWARD-FACING STEP,
FIGURE 2. - ILLUSTRATION OF TEST CASES.
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